

2013 ECTC Special Forum

Commercializing TSV 3DIC Wafer Process Technology Solutions for Next Generation of Mobile Electronic Systems

Herb Huang, Ph.D. and Sudipto Roy, Ph.D.

Semiconductor Manufacturing International Corporation

May 28, 2013

Outline

- System & Device Levels: Driving Forces for 3DIC
- Status of Technology Readiness for TSV 3DIC along the Supply Chain
- □ TSV-based 3DIC SiP for Handheld to Wearable
- Outweighing Controlling Factors in Solutions & Evolution
- □ Collaborative Supply-Chain 3DIC Foundry Model
- Closing Remarks

Smart Phone-Tablet-Wearable: Core Features & Enablers

Core Functions			9:42;
Communication	Multi band 2.5/3G/LTE wireless FE & baseband	Multi band 2.5/3G/LTE wireless FE & baseband	Multi band 2.5/3G/LTE wireless FE & baseband
Computing	• ARM core APU • GPU	Multicore low power APU or LP CPUGPU	•ARM core APU • GPU
Connectivity	• Bluetooth, WiFi • GPS, FM	• Bluetooth, WiFi • GPS, FM	•Bluetooth, WiFi •GPS, FM •Other low power NFC?
Display & interaction	High Res, touch sense Integrated displayController/interface	 Highest Res, touch sense Integrated display Fast controller/interface 	Projection, bright & mini display Voice control interface
Battery & power management	• Thin high capacity battery • PMU supporting all IC	Thin, highest capacity batteryPMU supporting all IC	Compact high capacity battery 1 PMU mini overall power
Imaging & sensing	High Res & video CIS10-degree motion sensingMulti noise cancelling mic	High Res & video CIS10-degree motion sensingMulti noise cancelling mic	 Ultra compact camera 10-degree motion sensing Mini N/S cancelling mic's
Key enabling factors for all overall functions	• Acceptable cost •Thin format •High performance (inc LP)	High performanceAcceptable costThin format	 Ultra small, thin Ultra low power Acceptable cost

Evolution of IC & Electronic System Integration

	Now	Future	Additional Technology Requirements	TSV 3DIC: Pro & Con
Dominant Driving of Systems	Smartphone Tablet	e-Wearable's: Smart-watch Smart-glass	 Thinner, lighter, smaller Low power, high speed Connectivity, computing, interactivity Flat or lower costs 	•++
Trend: IC & Subsystem Packaging	PoP, MCM, Discrete on PCB	More "3D"SiP on PCB, less discrete & isolated MCM	 Higher, denser I/O pins More RDL layers in SiP Thinner, smaller format Hybrid stack integration Lower cost, Better reliability 	·++ ·++ ·++ ·++
IC Devices & Fabrication	HKMG to FinFET	FinFET bulk Si, SOI	 Better device variation management Decouple logic with MS/RF to 2 chips, maybe at different nodes or technologies 	•++

Example: Chips to SiP Grouping on Smartphone PCB

Front Side	MCP/ SiP	TSV SiP Option	Back Side	MCP/ SiP	TSV Option
WiFi module	WiFi FEM SiP	Maybe but costly	APU	DRAM MCP	TSV Wide I/O best option but costly & manufacturability
3-axis gyroscope	MEMS+ASIC SIP	TSV SiP: thinner, better noise isolation Combo SiP:	LTE Baseband Processor	PMIC on front-side connected through PCB	Split logic potion with MS/RF to two chips, 2.5D SiP
3-axis accelerometer	MEMS+ASIC SiP	Single chip	Audio Chips	Analog MCP	May stay separated for noise isolation
Touch screen controller.	Interface	Performance gain but costly	Imaging Sensor Camera Module	13M BSI	Can further thinner WL camera module
PA GSM/GPRS/EDGE			Microphones	3 in different packages & sites	No help
CDMA Power				000	

CDMA Power

PA SiP with matching

PA LTE switches, IPD, LNA

PA WCDMA /

PA

PA WCDMA / HSUPA TSV SiP for PA module: improving noise performance, but cost needs justification

Device Level: Alternative "Process Integration"

Dedicated memory MOS
Better fine pitch dense
array & OPC
Optimized implants &
thermal budget

Dedicated specialty MOS
Gross litho CD & variable
patterns
Specialized implants &
analog tuning

Enhanced, dedicated CMOS (FinFET) design
Better ultra fine CD & OPC control
Simplified baseline implants & thermal budget

HS/LP dominant (to FinFET)
Ultra fine CD, fine array
Baseline implants & constrained
thermal budget

2 Poly Cell
Fine pitch stacked array
Special implants & thermal budget
(to emerging NVM)

Specialty & even analog MOS Variable CD & patterns Special implants & analog performance

Chip Level: Alternative "Interconnect" to 2D SOC

2D homogenous SOC

3D reconfigured architecture

- 1. FEOL CD => ~10nm, BEOL CD ~10's nm; narrowing long on-chip interconnects
- 2. Advance in IMD (LK => ELK) ceases, limiting further RC reduction

Readiness: Supply Chain Manufacturability Today

			_							_
Via-Mid Front-end	TSV- litl	-mid ho	TSV-mid etching		TSV-mid isolation		Barrier/seed DEP	TSV ECP	Post ECP Cu CMP	BEOL/FS- RDL/Bump
Foundry process			-11111111					-1111111		11111111
Capability vs. spec										
Window & CDU										
Tool maturity										
Running cost & throughput		able for run	Ready	for pilot		ure 4 mass oduction	Close to acceptable			
										-
Via-Mid Middle-end	Stacki			Temp be		Thinning /grinding	TSV reveal	Carrier debonding	Inspect & metrology	WL & SiP Testing
OSAT Process			<u> </u>	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Tmnh-				
	CtC	CtW	WtW							
Capability vs. spec										
Window & CDU										
Tool maturity			Engineering run							
Running cost & throughput		Not ready								

TSV 3DIC Implementation Roadmap: Pro & Con

Key Pro Factors

Key Con Factors

- Data speed
- KGDCost
- PKG thickness
 Yield
- Speed
- PKG thickness
- Wafer process
- Noise isolation
- PKG thickness
- PKG thickness
- Noise isolation
- Cost reduction thru WLP
- PKG thickness
- Functional requirements
- Cost reduction thru WLP

- TSV-CMOSI/O interface
- Cost
- Yield
- Cost (unless performance justified)
- Technical feasibility
- Difficult for large format chips

3DIC Commercialization: Key Factor Paradigm

Concept & research domain

3DIC for Overall Cost Reduction: Practical Solutions BGA Conventional fabrication Frame-based connects & assembly constructions DtD & DtW CtS wire bonding (with thru-board **WL thick film/bumping** PoP Chip to board assembly Wafer level thin film process DtD & DtW flip chip connects Chips to Intro **CMOS & local** On-chip global Inter-chip **PKG Carrier** I/O Connects **TSV** interconnects interconnects interconnects **Connects** (to Board) DtS flip chip TSV -based To substrate Die to TSI Wafer FE + bumping **TSV Si interposer** board assembly **2.5D SiP** flip chip DtS wire bond

Wide I/O DtS flip chip Die to Die **Board assembly TSV** CMOS FEOL + TSV + BEOL + bumping flip chip DtS wire bond 3D SiP

> Innovative re-constructions needed for overall cost reduction **Economically viable solution is in sight**

Multilayer

Substrate

PKG

Board

Via)

Emerging Mid-End & Two Ecosystem Models

- Technical spec (DR, etc) & hands-off: must shared from FE, ME, BE to system
- Productization & commercialization: only verified along full line down to system level
- Foundry & OSAT: best to leverage existing, differentiating but matching core strength & capability over ME, extended from FE and BE respectively

Collaborative & Full 3DIC Foundry Services

Key Competency & Services	IC Design	Devices on Wafer Fab & WL Testing	Wafer Level Packaging	Chip to System Packaging &Testing	System & Board Assembly	(Sub) System Design & Application
IDM's Or wafer +WLP+P&T		Complete vertica Full	I integration I foundry mod	Ext Se Or su		
Fab-lite & fabless	Core Value & Strength	Extended engine	eering design fo	or sub con		tra Capex \$ w, diff OPS
CMOS Wafer Foundry	Desig		• Limited capacity • High MFG \$			
WLP Partner	-	Ex	Join Value			
Chip & SiP & Testing Partner	Collabor	ative 3DIC Model	Expanded service		xt ervice	
System Assembler & User					Core Value & Strength	Ext Service

Closing Remarks

System towards mobile wearable driving supply chain to TSV 3DIC development & commercialization

- Mobile, handheld to wearable are inevitable, and a dominant trend
- Main electronic boards forced to shrink in size and thickness
- Core & peripheral chips continue to regroup to smaller, thinner SiP; isolated functional chips thinner, smaller; discrete devices to consolidate into SiP or SoC

Miniaturization, performance boost and overall manufacturing cost: tri-driving and limiting factors in paradigm of commercialization

- Scenario 1: performance gain outweigh increase in overall cost
- Scenario 2: 3D WLP and miniaturization also reducing overall cost
- Scenario 3: ultra thin becomes must for system & SiP integration

Collaborative TSV 3DIC foundry service: an adequate model to address overall supply chain manufacturability & costs

- Leverage available development resources, manufacturing lines, minimize overall capital investment and running costs
- Sustain & growth supply-chain ecosystem in collaborative evolution

Thank You

Semiconductor Manufacturing International Corporation

